Web Services – Architecture of Information Systems

in E-conomy Age

Krzysztof Zieliński

Department of Computer Science, University of Mining and Metallurgy

Al. Mickiewicza 30, 30-059 Krakow, email: kz@ics.agh.edu.pl
ABSTRACT

This papers describes basic features of a new economy, call E-conomy, which emerged in context of Internet technology. The IT technology architecture requirements of information systems in E-conomy age have been analysed and described. Next Web services are defined and fundamental characteristic of these systems is presented. It has been shown that Web services satisfy the most requirements of information systems for E-conomy.
1. INTRODUCTION

Enterprises and organisations of the twenty-first century must attend to the differences in the traditional and new economies and respond with appropriate strategies. The new economies are driven by Internet and related to the following terms defined below:

E-conomy is the virtual arena in which business actually is conducted, value is created and exchanged, transactions occur, and one-to-one relationships mature. These processes may be related to, but are nevertheless independent of, similar activities occurring in the conventional marketplace; sometimes called the digital economy or the cyber economy.

E-commerce is a particular type of E-business initiative that is focused around individual business transactions that use the Net as medium of exchange, including business-to-business as well as business-to-consumer.

E-business is any Internet initiative – tactical or strategic – that transforms business relationships, whether those relationships be business-to-consumer, business-to-business, intra-business, or event consumer-to-consumer. E-business is really a new way to drive efficiencies, speed, innovation, and new value creation in an organisation.

There is a natural evolution that companies follow in their E-business efforts. The majority of companies go through a series of predictable phases:

· Brochureware. At the beginning organisations use the Internet as a bulletin board for brochures, employee telephone directories, and over time, for more critical documents such as catalogues and price lists. For these companies, the Net is a one-way publishing mechanism. Brochureware is certainly progress, but it does not begin to exploit the next phase: interactivity.

· Customer interactivity. In the next phase, companies create a dialog with customers (empowering the customer to come in, ask, demand, dictate the kind of value that needs to be delivered). The term customer here could be consumer, end-customer, employee, and so on.

· Transaction enable. Companies begin using the Net to expand transaction-oriented processes (selling product, procuring supplies, enabling internal processes such as human resources activities, etc.).

· One-to-one relationships. The Internet is used to create customised silos of interactivity. Because Web technology allows companies to deal with customers on a one-to-one basis, product pricing becomes fluid, dictated by individual customers, often in an auction process.

· Real-time organisations. Zero latency organisations are able to plan, execute, and aggregate buyers and sellers in a virtual arena. These companies understand needs and deliver value in real time.

· COINs (Communities of Interests). The Internet helps companies create communities of interests (content, community, and commerce) that closely link various partners in a value chain.

As it is easy to see, the sophistication of E-business usage goes up in each phase. This trend should raise some red flags for executives because it means that the hurdles are getting steeper all the time. In other words, the minimum competencies required to simply enter a particular corner of the E-conomy are becoming more challenging every day.

The differences in the traditional and E-conomy is summarised in Table 1.

Table 1. Business Drivers in the Traditional and E-conomy [1]
Traditional Economy
E-conomy

Stable, predictable franchise
Free-for-all

Economies of scale
One-to-one relationships

Stasis; reliance on geography, capital
Movement

Positioning
Value migration

Long-range planning
Real-time execution (agility)

Protect products, markets, channels
Cannibalize products, markets, channels

Predict future
Shape or adapt to future

Encourage repetition
Encourage experimentation

Detailed action plans
Managing options

Structured formal alliances
Webs of informal alliances

Aversion to failure
Failure is expected

Weak links between reward and outcomes
Direct links between risk and reward

E-conomy requires an architectural foundation that encompasses a standards-based, enterprise-wide technology platform, on top of which the organisation can deploy a variety of value-added applications and networks. The E-business architecture model is shown in Fig.1. Once the architecture – networks, data security , database - is established, the higher layers of the system have a significant influence of the overall system functionality. Emerging IT technologies for these top three layer construction will be discussed in more details in this paper.

[image: image1.wmf]Enterprice

Integration

Server

Bussiness

Process

Model

Bussiness

Process

Model

Business

Composition

Business

Document

Requst

Business

Documen

Replyt

package

Service

Interface

High

-

level

Web

Service

define

define

Fundamental Business Objects

Paterns

Business Process

Automation

Enterprice

Integration

Server

Bussiness

Process

Model

Bussiness

Process

Model

Business

Composition

Business

Document

Requst

Business

Documen

Replyt

package

Service

Interface

High

-

level

Web

Service

define

define

Fundamental Business Objects

Paterns

Business Process

Automation

The structure of the paper is as follows. First IT architecture of E-conomy requirements are analysed. Next Web Services are defined as a new emerging technology for the E-business

Fig.1. E-business Architecture

architecture deployment. This technology is further described in Section 4 and 5. The paper is ended with conclusions.
2 IT ARCHITECTURE REQUIREMENTS

Any good architecture is constructed in response to specific requirements, and in accordance with basic architectural principles. Some of the basic architectural principles discussed important in context of E-business architecture are:

Separate concerns: The purpose of a strict separation of concerns is to keep independent things independent, so that a change in one part of the system does not adversely affect other parts. The most familiar example of this principle is the separation of interface and implementation. At the architecture level, this can be viewed as a separation of presentation functions from business functions. Another critical separation of concerns, for the purposes of this discussion, is the need to keep the business logic independent from the specific technology (EJB,CORBA, DCOM, and so on.) that is used to implement it. The fundamental idea is that a business solution should not be specified in terms of IT constructs such as messages or objects.
Accommodate the future: Architecture should provide flexibility, so that future application requirements can be satisfied easily. In building a flexible architecture, we try to identify both the future application requirements and areas that are likely to change. Clearly, the constantly changing technology landscape means that the architecture must also be flexible in the face of new technologies as they emerge and mature.

Align With Industry Standards: Industry standards provide enormous value to IT development, not only by providing standard solutions to difficult problems, but also by providing choice and technology commoditization, which let customers avoid vendor lock-in. Architecture must identify and incorporate appropriate standards, both current and emerging.

Architect for the Enterprise: Architecture strives to promote consistency and re-use. Thus, the difference between architecture and enterprise architecture is one of scope. Whereas application architecture typically applies to a single application or family of applications. Enterprise architecture is concerned with providing a consistent infrastructure throughout the entire enterprise, to be used by many different types of applications. Enterprise architecture must also promote the development of business functionality in such a way that it is easily reused by those many different applications.

Business Drivers: Perhaps the most important architectural principle is that the purpose of architecture (and of IT as a whole) is to support the enterprise’s business drivers, that is, the business strategies and goals. In consulting with CIO’s, CEO’s, and IT Directors over the past few years, the following:

• Become more competitive in this fast moving e-business environment, meaning much faster time-to-market with new applications.

• Continue to improve the quality of those applications.

• Reduce cost of the applications, meaning not only the development cost but the costs of maintenance and operation as well.

2 DEFINITION OF WEB SERVICES

Web service is a software construct that exposes business functionality over the Internet. In the context of a Web service, “expose” means:

• Identifying valuable business processes within the enterprise.

• Defining loosely-coupled, service-oriented inter-faces to those processes.

• Describing those interfaces in a Web-based, industry-standard format.

Service-oriented interfaces can be organised into Service-Oriented Architectures, which define systems in terms of reusable business services rather than business data, so that business processes can be used in many different applications. Commonly, smaller units of functionality are recombined into several different, larger business processes. Building systems based on such an architecture means that changes in business data do not require changes in cooperating or existing systems.

Loose coupling applies to several aspects of system design, including synchronicity, interface, data, and technology. Systems that are loosely-coupled in time have an asynchronous or event-driven model rather than a synchronous model of interaction. Interfaces can be designed with loose coupling in mind, so that minor changes and enhancements in services do not require updates to client software. The data passed between applications can also be described in a loosely-coupled, extensible way; XML allows backward-compatible and flexible enhancements to data schemas. Loose coupling allows different parts of the system to work together, but to remain independent so that changes in one part do not necessarily require changes elsewhere.

In this same context, “over the Internet” means:

• Publishing a description of the interface so that it can be discovered and used. The description of the interface is expressed in an industry-standard, XML-based format called Web Service Description Language (WSDL). WSDL supports a complete description of the operations available and the parameters required to use those business services. In addition, it describes how to bind to those services, specifying the protocols and endpoints required. Once a Web service is described, its description is published in a repository that conforms to the UDDI (Universal Description and Discovery Interface) standard. Clients can query the repository to discover an appropriate service. A client might access a service that is already known, or might search for a service based on a category, depending on the application. B2B partners will typically look up known services with known partners. Private consumers will be more likely tosearch for services by category, for example stock quotes or currency conversion, where the semantics of interactions are well understood. Over time, we expect to see a federation of repositories organized around industry verticals, like insurance or health care.
• Accepting requests and returning replies. The request is a message formatted according to the Simple Object Access Protocol (SOAP), which is a modular protocol built on top of XML. On the Internet, SOAP messages are sent using HTTP or HTTP/S (although SOAP is actually protocol-independent). SOAP’s XML foundation is important because XML provides an extensible mechanism for describing messages and content. This extension capability allows for a loosely-coupled relationship between sender and receiver, which is especially important over the Internet where two parties may be in different organizations or enterprises. In addition, XML is represented in ASCII text, which can easily pass through corporate firewalls over the HTTP protocol.

• Bridging between the outward-facing interface (accessible via standard Web protocols) and internal implementation of the service (typically using standard as well as proprietary enterprise protocols). The SOAP request is received by a run-time service (a SOAP “listener”) that accepts the SOAP message, extracts the XML message body, transforms the XML message into a native protocol, and delegates the request to the actual business process within the enterprise. These run-time capabilities may be hosted within a Web services container, which provides scalability, load balancing and other enterprise qualities-of-service for the Web service itself. So these six items serve as a first approximation of the requirements for a Web services architecture, as illustrated in Fig. 2.

Fig.2. Basic Web Services Architecture

To summarise, Web services technology uses XML and other standards to expose business functionality. The business services are described in WSDL, which is advertised in a UDDI repository. A client discovers the service and invokes it by sending SOAP messages that conform to the WSDL description. Web services were originally envisioned as providing interaction over the Internet, and that is typically how they are used today. But they are certainly not limited to that environment. Today, we are seeing simple business functions, such as CORBA objects, EJB or Java classes, or the targets of JMS messages, being exposed as Web services. A Web services runtime component handles the reception of the message, the translation of the XML to another format if necessary, and invocation of the back-end business functionality. In some systems, these runtime capabilities will be encapsulated within a Web service container.

4 WEB SERVICES CHARACTERISTICS
Looking at Web services from a slightly different angle, we can say that they have the following characteristics:
•A Web service exposes a well-defined service-based interface described in WSDL.

•A Web service is registered and can be located through UDDI or another Web service repository.

•A Web service communicates using higher-level, XML-based messages sent over standard protocols such as SOAP.

•A Web service is implemented inside the enterprise using existing (or new) business functionality.

[image: image2.wmf]Foundation Technologies

Security Network

Information

/

Databases

Develop

.

Tools

Access

Tools

Networked

Applications

Business

Goals

Foundation Technologies

Security Network

Information

/

Databases

Develop

.

Tools

Access

Tools

Networked

Applications

Business

Goals

So far, the basic architecture shown in Fig. 2 supports the characteristics that we desire in a Web service. It is important to note that there are two basic location or discovery paradigms:

• Static, in which you find a service that you know about.

• Dynamic, in which you discover a service dynamically.

Static discovery is much like existing naming or directory mechanisms in use today. Dynamic discovery is similar to Web search engine capabilities but is not prevalent today. This simply means that Web service discovery is one of those areas in which change is likely, and this potential for change has to be addressed by the enterprise architecture.
While networking overhead is obviously an issue for Web services, this does not mean that we should avoid using networks. But it does mean that we have to define our network service interfaces intelligently. The foremost goal of interface design for Web services is to increase request granularity, which is to say that we must design higher-level interfaces than those required in other service paradigms. In other words, a Web service must provide more value and pass more information in a single request. This goal is achieved by defining interfaces in terms of providing a specific business service, rather than in terms of getting and setting specific data values. Web service interfaces should enable business to take place via a single exchange of messages. One guideline we can use to help us define such interfaces is that they should expose a valuable business function, for example a sales transaction for a specific item.

This approach lead to a document based communications approach with data organised into XML business documents, as opposed to an RPC style. Since these documents can contain a great deal of data, document processing can be complex. A superb paradigm for both document processing (even for simple documents) and business composition, is that of a business process model (for example, a workflow definition accompanied by an execution service (for example, a workflow engine), as shown in Fig.3.
[image: image3.png]High-Lovel Web Services.

<]

Business Procees Automstion

tmla-

o

Aundamenta business ojecis__ packaged spplcaton

—tie]

define

Business
Process
Model

Fig.3. Document-Based Web Services
4. WEB SERVICES DISTRIBUTED SYSTEM ARCHITECTURE

[image: image4.png]wer | workspace enterprise resource
ey
Business | |application System
e
e || [e ,‘Wm T \>E
o Conpoin
- g
e e ===
el e
oplaion |
Wab Sanica | [Business Processing | L
Services Services services

Web Services Platform

Two of the most important concepts in distributed system architecture are tiers and layers. Architectural tiers and architectural layers both describe a logical separation of functions such that each tier or layer has a specific set of roles and responsibilities. The logical separation for architectural tiers—that is, the boundaries between tiers—are chosen/designed to support distribution, scalability, and reuse. Logical tiers can be mapped to any number of different physical computer network topologies. At one end of the distribution spectrum, all tiers might reside on the same machine. In more complex environments, a single logical tier might run on multiple machines (in the form of clusters or “machine farms”). The logical separation for architectural layers is chosen based on the need to separate infrastructure capabilities (for example, communication) from general services (for example, logging), from business logic. The relationship between architectural tiers and layers is shown in Fig. 4 which portrays three architectural layers and four architectural tiers.

The infrastructure layer is based on a Web services platform that provides communications capabilities, such as HTTP and SOAP for external interaction,

Fig 4. Advanced Web Services Architecture

as well as other protocols such as IIOP for internal communications. This layer also provides basic services such as logging, configuration, and management.
The Service layer provides those common services that span multiple tiers, specifically services needed to support Web services, business processing, and XML processing.

Now consider the individual tiers of the application layer. The User Tier of the application layer provides for initial message handling and makes use of Web Service Services such as an identity service, which establishes shared identity between partners, and security services such as authentication. The Workspace Tier processes the XML business document extracted from a received message. Document processing relies on XML services such as parsing, transformation, and persistence, as well as Business Processing Services such as the Business Process Engine for executing process definitions, and so on. Customisation of processing also relies on the identity service and the shared context it provides. The Enterprise Tier is responsible for implementing business functions, which may be exposed as business compositions. The compositions are constructed from primitive business processes and entities and this construction capability relies on the business processing and persistence services. Finally, the Resource Tier exposes existing enterprise resources such as legacy systems, databases, and packaged applications, to the business processes in the enterprise tier. As Fig.4 shows, there are three main groupings, or packages, within the services layer. The Web Services Service package provide capabilities specifically related to Web services, and includes:

• The identity service, which establishes shared identity between partners and which may provide customised processing for a specific partner.

• Service Level Agreement processing – Service Level Agreements are negotiated with each partner and specify things such as maximum and average response time, allowable down time, and so on. This service enforces and monitors these agreements.

• Security, which provides authentication and authorisation, non-repudiation, and so on. Security may be tied to existing mechanisms within the enterprise.

• Business Transaction Services, which provide an all-or-nothing outcome for long-lived business collaborations. This is not the same as the tradition 2PC transaction support in many existing systems (where transactions are typically short-lived) but is built upon such systems.

The Business Process Package provides services for executing business process models, specifically:

• Business Process Engine, which can execute Business Process Models.

• Auditing service to track each step in a process execution and to enable restart and recovery.

Finally, the XML Service Package provides services related to XML processing:

• Parsing and creating XML Documents.

• Transforming XML from one schema to another, or to and from a non-XML representation.

• Persisting XML document state.

5 CONCLUSIONS

Companies across the globe are viewing Web services an effective way of linking loosely-coupled systems together using a technology that doesn’t bind to a particular component model, or programming language or platform. Web services eliminates the barriers imposed by proprietary technologies. On average, according to many industry reports, 40% of the cost of every development goes to integration. Gartner predicts that by 2005, the aggressive use of Web services will drive a 30% increase in the efficiency of IT development projects.

A strict separation of concerns is enforced by the Web services architectural layers and tiers: by the explicit interfaces between layers, by the explicit boundaries between tiers, and by the explicit responsibilities of both tiers and layers.

Accommodation of change, for future application versions, is achieved via strong support for the creation of business models, fundamental business process, and business compositions. The services layer provides functions that enable the use of these mechanisms. The bottom line is that future versions and new applications can be created by building a few new processes, and then by recombining the new and existing process in different ways.

 Industry trends are accommodated by using Web services at many different levels within the enterprise, and by preparing for the next-generation Web service integration platforms. Such integration platforms will support this architecture very well, and will significantly increase the portion of the services layer that can be purchased off-the-shelf.

New technologies and mechanisms are supported by the device and technology abstractions inherent in the layers and tiers. This allows new technologies to be incorporated into the enterprise without affecting business logic or disrupting existing applications.

The various emerging industry standards are encapsulated into specific services within the services layer. This minimises the impact of change in these areas as standards are finalised or extended.

Finally, the architectural foundation of layers and tiers embody the fundamental mechanisms that promote consistency and reuse within the entire enterprise. Consistency and reuse in turn support the critical business requirements – of time to market, quality, and cost – that drive the adoption of technology in the first place.

REFERENCES

[1] A. Hartman, J.Sifons, J.Kadar, “Net-ready Strategies for Success in the E-conomy”, MacGraw-Hill, 2000.
[2] SOAP http://www.soapware.org/
[3] UDDI http://uddi.org/
[4] WSDL http://www.w3.org/TR/wsdl
[5] ebXML http://www.ebxml.org/
[6] JAXM http://java.su.com/xml/

[image: image5.wmf]J2EE

J2EE

CORBA

CORBA

JMS

JMS

Back

-

end

Systems

Firewall

EJB

Web

Services

Runtime

WSDL

Industry Repository

Web

Service

Container

Web

Services

Runtime

UDDI/

ebXML

SOAP/

HTTP(S)

execution

description

discovery

J2EE

J2EE

CORBA

CORBA

JMS

JMS

Back

-

end

Systems

Firewall

J2EE

J2EE

CORBA

CORBA

JMS

JMS

Back

-

end

Systems

J2EE

J2EE

CORBA

CORBA

JMS

JMS

Back

-

end

Systems

Firewall

EJB

Web

Services

Runtime

WSDL

Industry Repository

Web

Service

Container

Web

Services

Runtime

UDDI/

ebXML

SOAP/

HTTP(S)

execution

description

discovery

[image: image6.wmf]Message

Handling

Resource

Adaptor

Application

Adaptor

Business

Document

Processing

Business

Composition

Business

Entity

Business

Process

Web

Service

Services

Business Processing

Services

XML

Services

Tiers

Layers

user

workspace

enterprice

resource

application

services

infrastructure

Web

Services

Platform

Message

Handling

Resource

Adaptor

Application

Adaptor

Business

Document

Processing

Business

Composition

Business

Entity

Business

Process

Web

Service

Services

Business Processing

Services

XML

Services

Tiers

Layers

user

workspace

enterprice

resource

application

services

infrastructure

Web

Services

Platform

Message

Handling

Resource

Adaptor

Application

Adaptor

Business

Document

Processing

Business

Composition

Business

Entity

Business

Process

Web

Service

Services

Business Processing

Services

XML

Services

Tiers

Layers

user

workspace

enterprice

resource

application

services

infrastructure

Web

Services

Platform

