Framework for Consolidated Workload Adaptive
Management

Marcin Jarab!, Krzysztof Zielihskit

nstitute of Computer Science, AGH - UniversitySifience and Technology,
Al. Mickiewicza 30, 30-059 Krakow, Poland

{mj, kz} @agh.edu.pl
http://www.ics.agh.edu.pl

Abstract. This paper presents the applicability of moderntusaiization
technology for policy-driven adaptive workload mgament. The workload
consolidation problem and the resource managememtegs are defined.
Virtualization technologies used for workload cdigation haven been shortly
overviewed and compared. Particular attention isotd®l to lightweight
virtualization using a container technology, applie the Solaris 10 Operating
System. Subsequently, software architectures faptace control of virtualized
resources are described. Open-loop systems whighoiexhe model of
controlled system behavior are compared to closeg-Isystems exploiting
feedback control. Practical aspects of the implagat@mn of such systems for
Solaris 10 containers have been elaborated. Catisinuof a controller for
work consolidation is elaborated. The JMX techngland the Solaris 10
container technology are used for this purposeiodarprinciples of controller
implementation have been proposed and practicaflified. The conditions of
their applicability have also been identified. As canclusion, a hybrid
controller has been constructed and successfulhfieapin an experimental
system.

Keywords: software engineering, virtualization, adaptive, koad
management

1 Introduction

Efficient exploitation of complex computer systemsder changing workload
conditions requires greater IT infrastructure flebty through intelligent matching of
computing resources to application requirementsoriter to meet Service Level
Agreements (SLA). This may be achieved by equippiognputer systems with
mechanisms supporting self-management — a comneond tobserved recently in
initiatives promoting the vision of Autonomic/Adag Computing [1]. They aim to
build computing architectures that are capable ahaging themselves, anticipate
workloads, optimize performance and adapt to eventsirring in the surrounding
environment. In this way they contribute to QoSlaagion requirements, which are
of increasing importance in modern software enginge

Autonomic computing introduces the Autonomic Manmagencept which performs
the following activities: monitoring, analyzing, guining and execution. These
processing steps require knowledge about managedinees built into the manager
or collected during runtime. In the former caseshsinformation can be represented
as mathematical formulae, i.e. a managed resourcdeimdescribing a relation
between its state and control action that shouldoédormed to achieve desired
system behavior. The latter case corresponds ftuatien where such a model is
difficult to identify. The manager may search foitable control parameters during
an iteration process performed directly over madagesources. The managed
resource has to be equipped with an interface giuyi sensors and effectors
functionality to be managed.

In order to achieve manageability, the computingoueces are virtualized.
Virtualization is a technology which combines or divides computiesources to
create one or many operating environments, usiet seethodologies as hardware
and software partitioning or aggregation, partialcomplete machine simulation,
emulation, timesharing, and many others. As viization provides mechanisms for
control of resources the complexity of the compgstem remains very high and
setting up a suitable control algorithm is chaliegg The efficiency and correctness
of the control strategy depends on many paramesdrspf which must be very
carefully identified.

The research presented in this paper exploits Vigigtht containers as a
virtualization technology used for load consolidatin modern operating systems.
The aim of this study is to investigate the sofevarchitecture framework for
consolidated workload management built with suppbthe JMX [7] technology and
a preliminary study of different control strategi®articular attention is devoted to
identification of conditions under which classicantrol theory can be applied to
control CPU-bound workload. Practical experimerggenbeen performed for Solaris
10 containers.

The structure of this paper is as follows. In SettR, workload consolidation
mechanisms provided by modern virtualization anchagament technologies are
discussed. The resource management problem is edefim this context.
Subsequently, in Section 3, the concept of softvaachitectures for adaptive control
of virtualized resources are described. The prolémxposing virtualized operating
system resources as managed resources, instrumgitggdsensors and effectors, is
also discussed. Section 4 presents practical aspéthe implementation of such a
workload management system. Open-loop systems whigioit the model of
managed system behavior are compared to closedsiggtpms exploiting feedback
control. Construction of regulators for work coridation management is elaborated.
The JMX technology and Solaris Container technolagy used for this purpose. In
Section 5, different principles of controller impientation have been proposed and
experimentally verified. The conditions of theirpdipability have been identified.
The paper ends with conclusions.

2 Virtualization technology for workload consolidation

Modern enterprise data centers are shifting towardgility computing model
where many business-critical applications shareomnson pool of infrastructure
resources that offer capacity on demand. Manageofesuch a pool requires having
a control system that can dynamically allocate weses to applications in real time.
Each physical machine in the pool can consist mfimber of virtual containers, each
of which can host one or more applications.

Enterprise applications typically have resource aeas that vary over time due to
changes in business conditions and user demands. pbses new challenges for
system and application management which do not é@xidedicated environments.

in short time scales (e.g. seconds or minuteshethas to be a control system that can
dynamically allocate the server's capacity to \aftewontainers in real time. The

benefit of doing so is that it allows statisticalltiplexing between resource demands
from co-hosted applications, so that shared sereams reach higher resource
utilization. At the same time, the control systehowd be responsive enough to
ensure that application service level objectivdJ§ can be met.

The big challenge for consolidating multiple apations into a single physical
server is to provide mechanisms of control over rdsources (e.g. CPU, memory
portions or network bandwidth) utilized by thoseplgations. In the case where
consolidated applications must be grouped (e.g.bhginess importance) into
hierarchical sets, callaslorkloads, simple tools are not sufficient.

Modern, advanced operating system environmentsiggawiechanisms to better
satisfy performance requirements of workloads ddllghtweight virtualization. There
are two primary approaches to this virtualization:

e Container-based, which involves software that virtualizes an opiegasystem
environment. There is only one underlying operasiggstem kernel, which the
containers enhance by providing distinct bordefsriofg increased isolation
between groups of processes. Containers do noagsmay of the underlying
hardware. Instead, the virtualized OS or applicatommunicates with the
host OS to share resource usage, which then mhkeapipropriate calls to
real hardware. This technology is explored foranse by OpenVZ [9], and
Solaris Containers [5, 6].

. Paravirtualization virtualizes parts of an operating system enviramnisut
also selectively emulates the hardware devicesathvitualized OS requires.
Paravirtualization provides both a virtual machare access to the native
hardware, and thereby lets users run many instaoicdgferent OS’s. The
best known examples of this concept are VMwareaft] Xen [10].

In the presented study the first kind of lightweigirtualization technology will
be explored, as used in the Solaris 10 operatistesy Solaris 10 supports even
lighter virtualization mechanisms than Containefering resource control called
Projects. A Project serves as an administrative tag usegrdap related work in a
manner deemed useful by resource management wiphouiding the isolation level
supported by containers. Solaris Containers delpredictable levels of quality of
service. Some of these are achieved due to schegduwlihich is a resource sharing
mechanism that refers to making a sequence of mesoallocation decisions at

specific intervals. An application that does notahéts current allocation leaves or is
detached from the resource, which is then maddadolaifor another application’s
use.

When considering CPU resource consumption on adesimgchine by multiple
workloads or isolated domains, e.g. Solaris Coetair{which also contain several
workloads), one must consider a situation where wakkload or an entire domain
monopolizes available processor cycles and impeittsrs workloads or domains.
The default Solaris thread scheduler configuraitsonalled Time Shared Scheduling
(TSS). TSS adjusts the priority of each thread thame the time a given thread
consumes or spends waiting for CPU resource arel dquantum which is the limit of
time for which a thread is assigned access to @RpPending on priority. This might
lead to a situation where important workloads suffem insufficient CPU time to
complete their work. It is desirable to have a scifer which gives the ability to
prioritize access to CPU resources based on thertance of the workload.

The concept of a Fair Share Scheduler (FSS) [13]imteoduced by J. Kay and P.
Lauder [12]. This scheduler provides precise cdrafoCPU use, allowing optimal
system CPU resource usage. The system adminisgapyesses the importance of
each workload by the number of shares, which atelosame as CPU percentages:
shares define the relative importance of a givetivaoworkload to other active
workloads. If (i) § — shares assigned to workload W, (ii) N — numbleadive
workloads, (iii) $— shares assigned to active workload i={1,..,Migr the relative
entitlement E of workload W can be expressed with the followargiation:

Ew = SJ/Y"S 1)

It is important to emphasize that FSS only limitee tCPU usage if there is
competition for CPU; otherwise CPU shares are nevasted and a given active
workload can use 100% of CPU resources. A thredkdar=SS class is assigned CPU
access by the scheduler according to its shareaditm, recent utilization and CPU
usage by the other threads. When considering aleadkwith multiple threads, the
processor cycles are assigned proportionally betwikese threads according to
shares assigned to the workload.

In Solaris 10, resource contrgisoject.cpu-shares and zone.cpu-shares are used
to specify CPU shares for Projects and Contairespeactively. This feature is called
Two-Level Fair Share Scheduling. Zone entitlement for CPU shares is also partitioned
betweenprojects in the zone. The values of these resource controls can be set
statically or changed dynamically during runtime.

3 Softwarearchitecturefor adaptive wor kload management

A very well known architecture for adaptive or aadmic computing has been
proposed by IBM and distributed as the PMAC [2]li®oManagement Autonomic
Computing) toolkit. PMAC uses the very general apicof AE (Autonomic
Element) depicted in Fig.1. It consists of an AMufdnomic Manager) and MR
(Managed Resources). The control loop of AM cossitfour basic steps:

Autonomic Manager

-
Analyze Plan

Monitor Knowledge Execute

Managed resource touchpoint

o | == gy S

Managed resource

Figure 1.Autonomic Manager architecture proposetBidy [1].

monitoring, analyzing, planning, and executing, abhiare typical for adaptive
systems. These steps can exploit knowledge codlediging system activity or
supplied in the form of some kind of model. MR g®#nts computer resources
instrumented with sensors and effectors. Usaglhe PMAC AM model for
adaptive workload management is quite naturaledjuires exposition of virtualized
OS components such as Solaris OS Containers asaWtRimplementation of AM.
The most convenient way is to implement sensorsedfiedtors for Solaris Containers
using JMX technology and present them to a decisidssystem as Java managed
beans (MBeans). The solution is part of the JIME gktform, developed by the
authors, described in more detail in [3] and roydhlistrated in Fig. 2. It's designed
as a JIMS extension module implemented as a sdtBsfans. Each container and
project have separate instance&fféctor andSensor MBeans. The MBeans wrap the
native OS mechanisms of project and container resomanagement and expose
them as JMX connectors. Connectors make it possibleouple MBeans with the
decision subsystem using any of the available RMITP or SNMP communication
technologies.

In Solaris 10 consumption of resources for work®adn be measured using the
prstat command. This command reads data storégrot VFS (Virtual File System),
where each process in the zone has its own subaliye@n the global zone there are
also entries for processes from local zones). Thstnimportant information is
contained in psinfo, usage and status files.

Autonomic Management | Autonomic Manager
layer

I Obervation ” Learning ” Understanding” Planning ” Executing I

- SOAP RMI SNMP HTML Gateway J I M S
Connectivity layer Connector || Connector Adapter Adapter
Common open/ JIMS Agent Services [iscovery |[Auto-conf. | [Self-organ. | [[Dyn. loading] [security |
interface T mm oo oo e sttt F

Managed Element Managed Element Managed Element

Resource Abstraction Sensor Effector Sensor Effector Sensor Effector

layer MBean MBean MBean MBean MBean MBean

Resource interface Resource interface Resource interface

Resource access layer
Access Access||Access Access| [Access| |Access Access Access| [Access
method| |method | [method method| |method| [method method| |method [[method

[Resource] [Resource] [Resource] [Resource] [ReSource] [Resource]
Managed resources

Figure 2. JIMS extension modulesSofaris 10 management.

By summarizing information about resource usagerofesses it becomes possible to
calculate resource usagepobjects andzones. The capability to review historical data
is provided by thé&xtended Accounting facility which allows collection of statistics at
the process level, task level or both. Referringhese OS mechanisms, MBeans are
divided into three groups: monitoring, managemeiat accounting. Inside each group
there are MBeans faones andprojects. Resource monitoring MBeans contain read-
only attributes with basic information about zooeprojects and their resource usage
(CPU, memory, threads etc.) This information isiquically retrieved from/proc
VES with the help of a native library accessed digto Java Native Interface (JNI).
Management (Effector) MBeans use various methodstéoact with the OS: in order
to collect information aboutones and projects, MBeans read configuration files or
use JNI. Changes in configuration are applied tBcating shell scripts and system
commands (via invoking Javaunt i me. exec()). MBeans are also able to emit
JMX notifications to inform interested parties abaihanges in the system (i.e.
concerning added projects or changed resource Jusage

Implementation of an Autonomic Manager (AM) withetf?MAC toolkit is not
straightforward due to some drawbacks. The cuireptementation, when used in a
distributed environment, involves the Webshpere lidption Server, while remote
interfaces are only accessible \Eaterprise Java Beans components. There is no
support for IMX, which is a technology widely ufed software system management
[4]. Moreover, onlyCommon Base Events can be consumed by PMAC, which calls
for suitable adapter construction.

4 Practical aspects of workload controller implementation

Taking into account the drawbacks of the PMAC tapkk decision was made to
implement AM using the JMX technology based on3hdS framework. If a given
event occurs (e.g. if there is a load change oesmurce monitoring notification
emerges) it's possible to react more effectivelyewhconsumers are registered
directly within the AM. Furthermore, even thoughvimg several control loops in
system coordination seems desirable, the implerientaf such behavior seems to
be a non-trivial task with the PMAC. Thus, the owsized AM is geared for
workload management of Solaris Containers basethechanisms specified by the
Control Theory [11] and structured as:

= Open-loop AM workload manager, exploiting the FS&del. The number
of active Containers or Projects and their sharg €Ssignment is
monitored. Equation 1 from Section 2 is used fdatiee entitlement E of
workload W calculation and suitablga8ljustment.

= Closed-loop AM workload manager, which directly ésnContainers’ or
Projects’ resource shares to achieve desired ClBthatibn to the workload.
In this case, the CPU consumptiop' ldt time t is measured and used by the
controller to calculate desired shares. The kegaspf such an AM is the
controller algorithm concept.

The proposed AM types are depicted in Fig.3. Bo#magers use the same resource
allocation control mechanisms, provided by FSS,they differ in share calculation

procedure. Examples of such procedures are coesiderbelow.

Policy Policy
Manager + Model Controller
A A
S, [Sy, .S\l S, u,!
A A
FSS | | System FSS || System

Figure 3. Open-loop and closed-loop AM concept.

4.1 Closed-loop control using Proportional or Proportional-Integral regulators

The model is not used in this case; the whole systetreated as a black-box
using the closed-loop controller depicted in FigTBe controller uses current CPU
usage values and adjusts them by changing shavagdkcsignals) to maintain the
requested CPU usage.

A sample controller algorithm could use tReopotional (P) regulator expressed
by equation (2) anéroportional-Integral (Pl) where: (i) U, — required usage of CPU
by workload W, (i) U,' — usage observed at time t by workloag, Wii) S,' —
number of shares set at time t for workloag, \(iii) K , — proportional coefficient, K
— integral coefficient.

Sy =Sy + K, * e(t), where e(t) = W - U, @)

Sy =S Kyt e(t) + Kidi'e(t) 3)
4.2 Open-loop regulator with the FSS model

The open-loop regulator is based on the FSS madldy described by equation
(2). It must take into account the fact that theSE®nsiders only active workloads
and if a given workload is not CPU-bound, then rieing CPU portions might be
consumed by other workloads.

Let’'s assume that: (i) number,df workloads> 2, (ii) number of active workload
is changing at time t according to activity stageter A = [A'y, ..., Al\,] where A =
0 if W; is not active and A= 1 if W, is active, i = 1,...,l\, (iii) each workload is CPU
bound and has allocated shares Eollowing mathematical transformations of
equation (1) we obtain equation (4) for shargoe set for workload W

Sw= (Uu X "is S-AY (1-Uy) 4

Where,ZNWi¢S S-A' is the disturbance monitored by the manager amdjigl to the
sum of all active workload shares excluding workll&s, at time interval t.

5. Solaris 10 case study

This section presents a case study of controlliogklsads within the Solaris 10
environment. The implementation used the local rmbdop, running within alMS
Management Agent on the machine on which the workload was runnirtge goal of
this control loop was to adjust th@oject.cpu-shares resource control to a value
which would assure that a given percentage of R would always be available
for a given workload.

5.1. FSS control applicability rules

When regulating CPU shares for the project we shatbleck if the OS is fully
utilized, because only then does FSS schedulentkads according to assigned CPU
shares to specific projects; otherwise CPU reseunddch are not used are assigned
to other workloads. This fact impacts the impleraéoh of the controller. It would
be very desirable to add a simple rule which chéfdke whole OS is CPU-bound.

Figure 4 depicts the case when a single CPU-bourmteps is started.
Unfortunately, as can be noticed, output frpnstat increases gradually over the
period of more than one minute becapsgat shows incremental CPU usage for the
workload and moreover the measured value doeseaamhr100 %. This behavior
impacts the controller interval. The value mustaldequate with respect to the time
required by FSS to adapt itself to specified sharebvariable load. It is necessary to
point out tharprstat is the only utility which reports CPU utilizatiorepproject. It is,
however, possible to check immediate, total CPUization using thevmstat Solaris
utility, as shown in Fig 4. For that reason implena¢ion of the rule which checks if
the system is fully utilized uses the Solanmsstat command, referring to thieernel
dtatistics (KSTAT) interface. It may happen that under ayfultilized system some
application threads are not properly preemptedh@uscenario occurred in the test
depicted in Fig. 5. In this case, the JIMS monitgrthread responsible for acquiring
monitoring data wasn't scheduled properly by the @®l if the data are not
effectively acquired, the closed-loop controllelcodates the shares as 0. Such a
situation might be observed when the OS is satdiriage the running queue length is
greater than the number of CPUs. As a workarounsinmple rule is used, which
checks if the size of the vector which stores ddtaut CPU usage of controlled
project is greater then zero. This rule is evaldateeach regulator interval and if the
result is negative, that operation is cancelledamly for the current interval.

Comparison of vmstat and prstat Instability of the Propotional controller
100
90 ' ©
prstat 80
80 —
70 / vmstali F)
@ / ©
Fo I 5
=50 S 50
D40 2 “
S0 ©
20 »
10 10
0 T T T T T T
0:00:00 0:00:43 0:01:26 0:02:10 0:02:53 0:03:36 0:04:19 0:05:02
Elapsed time
Figure 4. Comparison afnstat andprstat Figure 5. Instability of the closed-loop
monitoring tools. Proportional (P) controller caused by irregular

monitoring thread scheduling.

When considering the case witlvaiable disturbance we should take into account
a situation where there is only one CPU-bound veattl and the whole CPU is
assigned to that workload. In such a case it makesense to run the control loop. A
rule might be implemented on the basis of the FSflehy which assigns CPU
according to share value, considering other actiarkloads U(isting 1). This
implementation returns a list of workloads and ¢batroller may check whether the
list contains a specific workload.

Li st get CPUBoundWor kl oads () {
Li st workl oadsLi st = new ArraylList();

/** Get active projects for which nunber of processes
and CPU usage is greater than zero */
Li st activeProjects = getActiveProjects();

/** Cal cul ate the sum of shares of these projects */
int sunCf Shares = 0;
foreach (projectld:activeProjects)

sunf Shares += get Proj ect Shar es(pr oj ectld);

/** Project is to be considered CPU-bound if the current CPU usage is
greater or equal then its CPU entitlenment according to assigned
shares */

float entitlenment; float cpuUsage;

foreach (proj ect I'd: acti vePr oj ects) {

entitlenent = getProjectShares(projectld)/
sun®f Shar es;
cpuUsage = get CpuUsage(proj ect ed);
if (entitlement <= cpuUsage) {
) wor k|l oadsLi st. add(proj ect ed);

return workl oadLi st ;

Listing 1. Implementation of the rule which findeetlist of the current CPU-bound workloads.

Another factor in the case with a variable distod®is a situation when the CPU
share for a controlled workload is not properlycoddted. The explanation is very
simple — namely when JIMS monitoring data are stdnea vector, some of them are

acquired at a time when only controlled workloaddésive and is assigned nearly the
entire CPU. Such data dilute the mean calculatagevand if the value is bigger then
the goal, shares are decreased instead of incredsedsolution to the problem is to
use a decaying average, similar to the Jacobsgnal@idrithm used in the TCP/IP

Protocol to smooth measured values.

5.1 CPU control experiments

This section reports a preliminary study of theseld-loop controller with rules
proposed in the previous section. Experiments wsrdormed under Solaris 10
running on a Sun Blade B100 (1GB RAM, CPU SPARC BB2) board. The goal of
control was taassure a constant allocation of the processor in conditions of variable
load e.g. a given project is guaranteed to use 70%Rdd @gardless of the number of
other active projects workload and disturbanceso(ather workloads). Thaspin
application, provided by the Solaris Resource Mandgols, was used. There were
two kinds of disturbancesariable andconstant (Fig. 7). Avariable disturbance was
generated with a period of 90 secondsofstant disturbance was activated after the
controlled workload reached the steady state (denisig the fact it was the only
CPU-bound workload, it reached close to 100% CPafjels CPU consumption due
to monitoring and control activity performed by tld#MS Management Agent
depicted in Fig. 6 shows that this overhead issnbistantial.

JIMS CPU consumption Generated disturbance

[— — -Vaiable

[T
. | !

Congant ‘

CPU usage

|
|
[
|
|
|
I
f
I

' |
‘ |
‘ |
' |
(I
\

-
by

L
Elapsed time Elapsed time

Figure 6. JIMS Management Agent CPUWFrigure 7. Disturbance generated during tests.
usage.

Fig. 8 presents the case where only one CPU-bouwnttlead is started in the
selected project, at the beginning. After a fewoses, when CPU usage increases to
95%, two other CPU-bound workloads are startedheroprojects, which results in a
drop of CPU usage of the selected project. Thery akveral more seconds, the P
controller is turned on. It changed the share atioo to the controlled project,
stabilizing CPU usage at 70%. The experiment wapsated for different values of

the K, coefficient. As shown in a Figure 9 the best ressulas achieved for J<7.

Comparision of the coefficient values for the P regulator

90 4
80 -
70 A
Ay
o 60 /) i
[}
8
S 50 -
> IWW
S a0
30 4
—Kp0.6 ——Kpl Kp2
20 Kp3 —Kp4 —Kp5
10 —__Kpsp ——Kp7 |

Elapsed Time

Figure 8. Proportional regulator used for adjustprgject.cpu-shares resource control for
workload with target CPU usage of 70%.

Quality of the P regulator according to the coeffic ient values

@ Kp0.6
B Kpl
OKp2
OKp3
B Kp4
@ Kp5
mKp6
oKp7

Bl E———

Figure 9. Quality of the Proportional regulator m@®d using integral of squared error
method.

20000 1

10000 1

An interesting observation is that despite the demify of virtualization
mechanisms and delay in CPU usage accounting paegtbbyprstat, the system can
be approximated to the first degree. These refudtdfy the application of P and PI
regulators for CPU usage control of the selectajlept, under variable disturbances
shown in Fig. 7, as presented in Fig. 10. It idewnt that the smoothing operation
performed by Jacobson algorithms significantly ioyas control quality and

stabilizes the system. P and PI regulators prosiiaiéar quality of control, as can be
seen in Fig. 10. The integral of squared erroisaét0102271 and100413 for P and
Pl regulators respectively. Coefficients for the rBgulator were calculated on the
basis of the very well know method called step-oese analysis [11].

Comparison of P and PI regulators with and without Jacobson

CPU usage

w/o regulator - w/o Jacobson

0:00:00
0:01:05
0:02:10
0:03:15
0:04:20
0.05:25
0:.06:30
0.07:35
0:08:40
0:09:45
0:10:50
0:11:55
0:13.00
0:14:05
0:15:10
0:16:15
0:17:20
0:18:25
0:19:30
0:21:40
0:22:45
0:23:50
0:24:55
0:26:00
0:27:05
0:28:10
0:29:15
0:30:20
0:31:25
0:32:30
0:33:35
0:34:40
0:35:45
0:36:50
0:37:55
0:39:00
0:40:05
0:41:10

82
g 8
B
d

Elapsed time

Figure 10. Proportional and Proportional-Inggegulators with the Jacobson algorithm.

6. Conclusions

This paper presents the framework for consolida@daptive workload
management. The primary contribution is organizatid the control loop and its
implementation with JMX technology, used for expiosi mechanisms already
supported by modern virtualization technologies.e Throposed solution was
successfully verified for a simple control polidctyopens a very wide area of research,
focused on control strategy selection. The mosmisimg course seems to be the use
of a hybrid controller which combines elements tdssical control theory with
heuristic rules or fuzzy logic. These topics w#l the subject of future studies.

Acknowledgments. This research has been partially supported bytiish Ministry
of Education and Science grant no.1583/T11/2005/29.
References

1. Horn, P. Autonomic Computing: IBM's Perspective ore tBtate of Information
Technology, October 15, 2001, http://researchwelsavaibm.com/autonomic.

11.

12.

13.

14.

Kirchstein E., Policy Management for Autonomic Coripg: Using three coordinated
tools to get managed resources PMAC-ready, ApfB520

Zielinski, K., Jarab, M., Wieczorek, D., Batos, K. JIMS Extensions fBesource
Monitoring and Management of Solaris 10, AdvancBgence through Computation -
ICCS 2006, LNCS 3994, Springer-Verlag, Berlin/Heidell2606, pp. 1039-1046.

Batos, K., Zieliski, K. JIMS - the Uniform Approach to Grid Infrastture and
Application Monitoring, CGW '04, —~Workshop Proceeghkn 2005, pp. 160-167.

Price D., Tucker A., “Solaris Zones: Operating 8wst Support for Consolidating
Commercial Workloads”, Proceedings of the 18th UsenSA Conference, November
14-19, Usenix, Atlanta, GA, 2004, pp. 241-254.

Lageman M., Solaris Containers — What They Are amuvHo Use Them, Sun
Microsystems, http://www.sun.com/blueprints/0509&679.pdf, 2005.

Sun Microsystems, Java™ Management Extensions umsfmtation and Agent
Specification v. 1.2, JSR 003, available at: bigplorg/en/jsr/detail?id=3
(jmx_1.2_spec.pdf), Santa Clara, CA, 2002.

“VYMware” http://www.vmware.com/.

“OpenVZ" http://openvz.org/.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. HakisHo, R. Neugebauery, I. Pratt, A.
Wareld, Xen and the Art of Virtualization, SOSP 200

Hellerstein J. L., Diao Y., Parekh S.,Tilbury D. Mzeedback Control of Computing
Systems, Wiley-IEEE Press, August 24, 2004, ISBNOIB-0471266372.

Kay J., Lauder P., A Fair Share Scheduler, Comnatioic of the ACM ,Volume 31,
Issue 1, January 1988, ISSN:0001-0782, pp. 44 — 55.

Gunther N.J., Solaris System Resource Manager:| Aler Wanted Was My Unfair
Advantage (And Why You Can't Get It!), Dec. 5-10 99@omputer Measurement Group
Conference, Reno, NV.

Jacobson, V., "Congestion Avoidance and Control"'GGEDMM, 1988, Stanford,
California.

