
Framework for Consolidated Workload Adaptive
Management

Marcin Jarząb1 , Krzysztof Zieliński1

1 Institute of Computer Science, AGH - University of Science and Technology,
Al. Mickiewicza 30, 30-059 Krakow, Poland

{mj, kz} @agh.edu.pl
http://www.ics.agh.edu.pl

Abstract. This paper presents the applicability of modern virtualization
technology for policy-driven adaptive workload management. The workload
consolidation problem and the resource management process are defined.
Virtualization technologies used for workload consolidation haven been shortly
overviewed and compared. Particular attention is devoted to lightweight
virtualization using a container technology, applied in the Solaris 10 Operating
System. Subsequently, software architectures for adaptive control of virtualized
resources are described. Open-loop systems which exploit the model of
controlled system behavior are compared to closed-loop systems exploiting
feedback control. Practical aspects of the implementation of such systems for
Solaris 10 containers have been elaborated. Construction of a controller for
work consolidation is elaborated. The JMX technology and the Solaris 10
container technology are used for this purpose. Various principles of controller
implementation have been proposed and practically verified. The conditions of
their applicability have also been identified. As a conclusion, a hybrid
controller has been constructed and successfully applied in an experimental
system.

Keywords: software engineering, virtualization, adaptive, workload
management

1 Introduction

Efficient exploitation of complex computer systems under changing workload
conditions requires greater IT infrastructure flexibility through intelligent matching of
computing resources to application requirements, in order to meet Service Level
Agreements (SLA). This may be achieved by equipping computer systems with
mechanisms supporting self-management – a common trend observed recently in
initiatives promoting the vision of Autonomic/Adaptive Computing [1]. They aim to
build computing architectures that are capable of managing themselves, anticipate
workloads, optimize performance and adapt to events occurring in the surrounding
environment. In this way they contribute to QoS application requirements, which are
of increasing importance in modern software engineering.

Autonomic computing introduces the Autonomic Manager concept which performs
the following activities: monitoring, analyzing, planning and execution. These
processing steps require knowledge about managed resources built into the manager
or collected during runtime. In the former case, such information can be represented
as mathematical formulae, i.e. a managed resource model describing a relation
between its state and control action that should be performed to achieve desired
system behavior. The latter case corresponds to a situation where such a model is
difficult to identify. The manager may search for suitable control parameters during
an iteration process performed directly over managed resources. The managed
resource has to be equipped with an interface providing sensors and effectors
functionality to be managed.

In order to achieve manageability, the computing resources are virtualized.
Virtualization is a technology which combines or divides computing resources to
create one or many operating environments, using such methodologies as hardware
and software partitioning or aggregation, partial or complete machine simulation,
emulation, timesharing, and many others. As virtualization provides mechanisms for
control of resources the complexity of the computer system remains very high and
setting up a suitable control algorithm is challenging. The efficiency and correctness
of the control strategy depends on many parameters, all of which must be very
carefully identified.

The research presented in this paper exploits lightweight containers as a
virtualization technology used for load consolidation in modern operating systems.
The aim of this study is to investigate the software architecture framework for
consolidated workload management built with support of the JMX [7] technology and
a preliminary study of different control strategies. Particular attention is devoted to
identification of conditions under which classical control theory can be applied to
control CPU-bound workload. Practical experiments have been performed for Solaris
10 containers.

The structure of this paper is as follows. In Section 2, workload consolidation
mechanisms provided by modern virtualization and management technologies are
discussed. The resource management problem is defined in this context.
Subsequently, in Section 3, the concept of software architectures for adaptive control
of virtualized resources are described. The problem of exposing virtualized operating
system resources as managed resources, instrumented using sensors and effectors, is
also discussed. Section 4 presents practical aspects of the implementation of such a
workload management system. Open-loop systems which exploit the model of
managed system behavior are compared to closed-loop systems exploiting feedback
control. Construction of regulators for work consolidation management is elaborated.
The JMX technology and Solaris Container technology are used for this purpose. In
Section 5, different principles of controller implementation have been proposed and
experimentally verified. The conditions of their applicability have been identified.
The paper ends with conclusions.

2 Virtualization technology for workload consolidation

Modern enterprise data centers are shifting towards a utility computing model
where many business-critical applications share a common pool of infrastructure
resources that offer capacity on demand. Management of such a pool requires having
a control system that can dynamically allocate resources to applications in real time.
Each physical machine in the pool can consist of a number of virtual containers, each
of which can host one or more applications.

Enterprise applications typically have resource demands that vary over time due to
changes in business conditions and user demands. This poses new challenges for
system and application management which do not exist in dedicated environments.
Because each of the hosted applications can express a resource demand that changes
in short time scales (e.g. seconds or minutes), there has to be a control system that can
dynamically allocate the server’s capacity to virtual containers in real time. The
benefit of doing so is that it allows statistical multiplexing between resource demands
from co-hosted applications, so that shared servers can reach higher resource
utilization. At the same time, the control system should be responsive enough to
ensure that application service level objectives (SLOs) can be met.

The big challenge for consolidating multiple applications into a single physical
server is to provide mechanisms of control over the resources (e.g. CPU, memory
portions or network bandwidth) utilized by those applications. In the case where
consolidated applications must be grouped (e.g. by business importance) into
hierarchical sets, called workloads, simple tools are not sufficient.

Modern, advanced operating system environments provide mechanisms to better
satisfy performance requirements of workloads called lightweight virtualization. There
are two primary approaches to this virtualization:

• Container-based, which involves software that virtualizes an operating system
environment. There is only one underlying operating system kernel, which the
containers enhance by providing distinct borders offering increased isolation
between groups of processes. Containers do not emulate any of the underlying
hardware. Instead, the virtualized OS or application communicates with the
host OS to share resource usage, which then makes the appropriate calls to
real hardware. This technology is explored for instance by OpenVZ [9], and
Solaris Containers [5, 6].

• Paravirtualization virtualizes parts of an operating system environment but
also selectively emulates the hardware devices that a virtualized OS requires.
Paravirtualization provides both a virtual machine and access to the native
hardware, and thereby lets users run many instances of different OS’s. The
best known examples of this concept are VMware [8] and Xen [10].

In the presented study the first kind of lightweight virtualization technology will
be explored, as used in the Solaris 10 operating system. Solaris 10 supports even
lighter virtualization mechanisms than Containers, offering resource control called
Projects. A Project serves as an administrative tag used to group related work in a
manner deemed useful by resource management without providing the isolation level
supported by containers. Solaris Containers deliver predictable levels of quality of
service. Some of these are achieved due to scheduling, which is a resource sharing
mechanism that refers to making a sequence of resource allocation decisions at

specific intervals. An application that does not need its current allocation leaves or is
detached from the resource, which is then made available for another application’s
use.

When considering CPU resource consumption on a single machine by multiple
workloads or isolated domains, e.g. Solaris Containers (which also contain several
workloads), one must consider a situation where one workload or an entire domain
monopolizes available processor cycles and impacts others workloads or domains.
The default Solaris thread scheduler configuration is called Time Shared Scheduling
(TSS). TSS adjusts the priority of each thread based on the time a given thread
consumes or spends waiting for CPU resource and time quantum which is the limit of
time for which a thread is assigned access to CPU, depending on priority. This might
lead to a situation where important workloads suffer from insufficient CPU time to
complete their work. It is desirable to have a scheduler which gives the ability to
prioritize access to CPU resources based on the importance of the workload.

The concept of a Fair Share Scheduler (FSS) [13] was introduced by J. Kay and P.
Lauder [12]. This scheduler provides precise control of CPU use, allowing optimal
system CPU resource usage. The system administrator expresses the importance of
each workload by the number of shares, which are not the same as CPU percentages:
shares define the relative importance of a given active workload to other active
workloads. If (i) Sw – shares assigned to workload W, (ii) N – number of active
workloads, (iii) Si – shares assigned to active workload i={1,..,N}, then the relative
entitlement Ew of workload W can be expressed with the following equation:

Ew = Sw/∑i
NSi (1)

It is important to emphasize that FSS only limits the CPU usage if there is
competition for CPU; otherwise CPU shares are never wasted and a given active
workload can use 100% of CPU resources. A thread in the FSS class is assigned CPU
access by the scheduler according to its share allocation, recent utilization and CPU
usage by the other threads. When considering a workload with multiple threads, the
processor cycles are assigned proportionally between these threads according to
shares assigned to the workload.

In Solaris 10, resource controls project.cpu-shares and zone.cpu-shares are used
to specify CPU shares for Projects and Containers respectively. This feature is called
Two-Level Fair Share Scheduling. Zone entitlement for CPU shares is also partitioned
between projects in the zone. The values of these resource controls can be set
statically or changed dynamically during runtime.

3 Software architecture for adaptive workload management

A very well known architecture for adaptive or autonomic computing has been
proposed by IBM and distributed as the PMAC [2] (Policy Management Autonomic
Computing) toolkit. PMAC uses the very general concept of AE (Autonomic
Element) depicted in Fig.1. It consists of an AM (Autonomic Manager) and MR
(Managed Resources). The control loop of AM consists of four basic steps:

Figure 1.Autonomic Manager architecture proposed by IBM [1].

monitoring, analyzing, planning, and executing, which are typical for adaptive
systems. These steps can exploit knowledge collected during system activity or
supplied in the form of some kind of model. MR represents computer resources
instrumented with sensors and effectors. Usage of the PMAC AM model for
adaptive workload management is quite natural. It requires exposition of virtualized
OS components such as Solaris OS Containers as MR, and implementation of AM.
The most convenient way is to implement sensors and effectors for Solaris Containers
using JMX technology and present them to a decision subsystem as Java managed
beans (MBeans). The solution is part of the JIMS [4] platform, developed by the
authors, described in more detail in [3] and roughly illustrated in Fig. 2. It’s designed
as a JIMS extension module implemented as a set of MBeans. Each container and
project have separate instances of Effector and Sensor MBeans. The MBeans wrap the
native OS mechanisms of project and container resource management and expose
them as JMX connectors. Connectors make it possible to couple MBeans with the
decision subsystem using any of the available RMI, HTTP or SNMP communication
technologies.

In Solaris 10 consumption of resources for workloads can be measured using the
prstat command. This command reads data stored in /proc VFS (Virtual File System),
where each process in the zone has its own subdirectory (in the global zone there are
also entries for processes from local zones). The most important information is
contained in psinfo, usage and status files.

Managed resources

Resource access layer

Resource Abstraction
layer

Connectivity layer

Common open
interface

Autonomic Management
layer

JIMS
Auto-conf. Self-organ. Dyn. loadingDiscovery Security

RMI
Connector

SNMP
Adapter

HTML
Adapter

SOAP
Connector

Gateway

Resource Resource

Access
method

Resource interface

Access
method

Access
method

Sensor
MBean

Managed Element

Resource Resource

Access
method

Resource interface

Access
method

Access
method

Managed Element

Resource Resource

Access
method

Resource interface

Access
method

Access
method

Managed Element

Autonomic Manager

Obervation Learning Understanding Planning Executing

JIMS Agent Services

Effector
MBean

Sensor
MBean

Effector
MBean

Sensor
MBean

Effector
MBean

Managed resources

Resource access layer

Resource Abstraction
layer

Connectivity layer

Common open
interface

Autonomic Management
layer

JIMS
Auto-conf. Self-organ. Dyn. loadingDiscovery Security

RMI
Connector

SNMP
Adapter

HTML
Adapter

SOAP
Connector

Gateway

Resource Resource

Access
method

Resource interface

Access
method

Access
method

Sensor
MBean

Managed Element

Resource Resource

Access
method

Resource interface

Access
method

Access
method

Managed Element

Resource Resource

Access
method

Resource interface

Access
method

Access
method

Managed Element

Autonomic Manager

Obervation Learning Understanding Planning Executing

JIMS Agent Services

Effector
MBean

Sensor
MBean

Effector
MBean

Sensor
MBean

Effector
MBean

 Figure 2. JIMS extension modules for Solaris 10 management.

By summarizing information about resource usage of processes it becomes possible to
calculate resource usage of projects and zones. The capability to review historical data
is provided by the Extended Accounting facility which allows collection of statistics at
the process level, task level or both. Referring to these OS mechanisms, MBeans are
divided into three groups: monitoring, management and accounting. Inside each group
there are MBeans for zones and projects. Resource monitoring MBeans contain read-
only attributes with basic information about zones or projects and their resource usage
(CPU, memory, threads etc.) This information is periodically retrieved from /proc
VFS with the help of a native library accessed through Java Native Interface (JNI).
Management (Effector) MBeans use various methods to interact with the OS: in order
to collect information about zones and projects, MBeans read configuration files or
use JNI. Changes in configuration are applied by executing shell scripts and system
commands (via invoking Java Runtime.exec()). MBeans are also able to emit
JMX notifications to inform interested parties about changes in the system (i.e.
concerning added projects or changed resource usage).

Implementation of an Autonomic Manager (AM) with the PMAC toolkit is not
straightforward due to some drawbacks. The current implementation, when used in a
distributed environment, involves the Webshpere Application Server, while remote
interfaces are only accessible via Enterprise Java Beans components. There is no
support for JMX, which is a technology widely used for software system management
[4]. Moreover, only Common Base Events can be consumed by PMAC, which calls
for suitable adapter construction.

4 Practical aspects of workload controller implementation

Taking into account the drawbacks of the PMAC toolkit, a decision was made to
implement AM using the JMX technology based on the JIMS framework. If a given
event occurs (e.g. if there is a load change or a resource monitoring notification
emerges) it’s possible to react more effectively when consumers are registered
directly within the AM. Furthermore, even though having several control loops in
system coordination seems desirable, the implementation of such behavior seems to
be a non-trivial task with the PMAC. Thus, the customized AM is geared for
workload management of Solaris Containers based on mechanisms specified by the
Control Theory [11] and structured as:

� Open-loop AM workload manager, exploiting the FSS model. The number
of active Containers or Projects and their share (Si) assignment is
monitored. Equation 1 from Section 2 is used for relative entitlement Ew of
workload W calculation and suitable Si adjustment.

� Closed-loop AM workload manager, which directly tunes Containers’ or
Projects’ resource shares to achieve desired CPU allocation to the workload.
In this case, the CPU consumption Uw

t at time t is measured and used by the
controller to calculate desired shares. The key aspect of such an AM is the
controller algorithm concept.

The proposed AM types are depicted in Fig.3. Both managers use the same resource
allocation control mechanisms, provided by FSS, but they differ in share calculation

procedure. Examples of such procedures are considered below.

4.1 Closed-loop control using Proportional or Proportional-Integral regulators

The model is not used in this case; the whole system is treated as a black-box
using the closed-loop controller depicted in Fig. 3. The controller uses current CPU
usage values and adjusts them by changing shares (control signals) to maintain the
requested CPU usage.

A sample controller algorithm could use the Propotional (P) regulator expressed
by equation (2) and Proportional-Integral (PI) where: (i) Uw – required usage of CPU
by workload Ww, (ii) Uw

t – usage observed at time t by workload Ww, (iii) Sw
t –

number of shares set at time t for workload Ww, (iiii) K p – proportional coefficient, Ki
– integral coefficient.

4.2 Open-loop regulator with the FSS model

The open-loop regulator is based on the FSS model already described by equation
(1). It must take into account the fact that the FSS considers only active workloads
and if a given workload is not CPU-bound, then remaining CPU portions might be
consumed by other workloads.

Let’s assume that: (i) number Nw of workloads ≥ 2, (ii) number of active workload
is changing at time t according to activity state vector At = [At

1, …, At
Nw] where At

i =
0 if Wi is not active and Ati = 1 if Wi is active, i = 1,...,Nw, (iii) each workload is CPU
bound and has allocated shares Si. Following mathematical transformations of
equation (1) we obtain equation (4) for shares Sw to be set for workload Ww:

St
w = (Uw ∑

Nw
i≠s Si* A

t
i)/ (1-Uw) (4)

Where, ∑Nw
i≠s Si* A

t
i is the disturbance monitored by the manager and is equal to the

sum of all active workload shares excluding workload Ww at time interval t.

Sw
t+1 = Sw

t + Kp * e(t), where e(t) = Uw
t – Uw (2)

Sw
t+1 = Sw

t + Kp * e(t) + Ki ∑i
t
 e(t) (3)

Policy

FSSFSSFSSFSS

Manager + ModelManager + ModelManager + ModelManager + Model

SystemSystemSystemSystem

SSSSw [S[S[S[S1111, , , , …SSSSN]]]]

FSSFSSFSSFSS

ControllerControllerControllerController

SystemSystemSystemSystem

SSSSw UUUUw
tttt

PolicyPolicy

FSSFSSFSSFSS

Manager + ModelManager + ModelManager + ModelManager + Model

SystemSystemSystemSystem

SSSSw [S[S[S[S1111, , , , …SSSSN]]]]

FSSFSSFSSFSS

ControllerControllerControllerController

SystemSystemSystemSystem

SSSSw UUUUw
tttt

Policy

 Figure 3. Open-loop and closed-loop AM concept.

5. Solaris 10 case study

This section presents a case study of controlling workloads within the Solaris 10
environment. The implementation used the local control loop, running within a JIMS
Management Agent on the machine on which the workload was running. The goal of
this control loop was to adjust the project.cpu-shares resource control to a value
which would assure that a given percentage of CPU time would always be available
for a given workload.

5.1. FSS control applicability rules

When regulating CPU shares for the project we should check if the OS is fully

utilized, because only then does FSS schedule the threads according to assigned CPU
shares to specific projects; otherwise CPU resources which are not used are assigned
to other workloads. This fact impacts the implementation of the controller. It would
be very desirable to add a simple rule which checks if the whole OS is CPU-bound.

Figure 4 depicts the case when a single CPU-bound process is started.
Unfortunately, as can be noticed, output from prstat increases gradually over the
period of more than one minute because prstat shows incremental CPU usage for the
workload and moreover the measured value does not reach 100 %. This behavior
impacts the controller interval. The value must be adequate with respect to the time
required by FSS to adapt itself to specified shares and variable load. It is necessary to
point out than prstat is the only utility which reports CPU utilization per project. It is,
however, possible to check immediate, total CPU utilization using the vmstat Solaris
utility, as shown in Fig 4. For that reason implementation of the rule which checks if
the system is fully utilized uses the Solaris vmstat command, referring to the kernel
statistics (KSTAT) interface. It may happen that under a fully utilized system some
application threads are not properly preempted. Such a scenario occurred in the test
depicted in Fig. 5. In this case, the JIMS monitoring thread responsible for acquiring
monitoring data wasn’t scheduled properly by the OS and if the data are not
effectively acquired, the closed-loop controller calculates the shares as 0. Such a
situation might be observed when the OS is saturated i.e. the running queue length is
greater than the number of CPUs. As a workaround, a simple rule is used, which
checks if the size of the vector which stores data about CPU usage of controlled
project is greater then zero. This rule is evaluated at each regulator interval and if the
result is negative, that operation is cancelled but only for the current interval.

When considering the case with a variable disturbance we should take into account
a situation where there is only one CPU-bound workload and the whole CPU is
assigned to that workload. In such a case it makes no sense to run the control loop. A
rule might be implemented on the basis of the FSS model, which assigns CPU
according to share value, considering other active workloads (Listing 1). This
implementation returns a list of workloads and the controller may check whether the
list contains a specific workload.

List getCPUBoundWorkloads () {
 List workloadsList = new ArrayList();

 /** Get active projects for which number of processes
 and CPU usage is greater than zero */
 List activeProjects = getActiveProjects();

 /** Calculate the sum of shares of these projects */
 int sumOfShares = 0;
 foreach (projectId:activeProjects) {
 sumOfShares += getProjectShares(projectId);
 }

 /** Project is to be considered CPU-bound if the current CPU usage is
 greater or equal then its CPU entitlement according to assigned
 shares */
 float entitlement; float cpuUsage;
 foreach (projectId:activeProjects) {
 entitlement = getProjectShares(projectId)/
 sumOfShares;
 cpuUsage = getCpuUsage(projected);
 if (entitlement <= cpuUsage) {
 workloadsList.add(projected);
 }
 }
 return workloadList;
}

Another factor in the case with a variable disturbance is a situation when the CPU

share for a controlled workload is not properly calculated. The explanation is very
simple – namely when JIMS monitoring data are stored in a vector, some of them are

Comparison of vmstat and prstat

0

10

20

30

40

50

60

70

80

90

100

0:00:00 0:00:43 0:01:26 0:02:10 0:02:53 0:03:36 0:04:19 0:05:02
Elapsed time

C
P

U
 u

sa
ge

prstat

v mstat

Instability of the Propotional controller

0

10

20

30

40

50

60

70

80

90

100

0:
00

:0
0

0:
02

:2
5

0:
04

:5
0

0:
07

:1
5

0:
09

:4
0

0:
12

:0
5

0:
14

:3
0

0:
16

:5
5

0:
19

:2
0

0:
21

:4
5

0:
24

:1
0

0:
26

:3
5

0:
29

:0
0

0:
31

:2
5

0:
33

:5
0

0:
36

:1
5

0:
38

:4
0

0:
41

:0
5

0:
43

:3
0

0:
45

:5
5

0:
48

:2
0

0:
50

:4
5

0:
53

:1
0

0:
55

:3
5

0:
58

:0
0

Elapsed time

C
P

U
 u

sa
ge

Figure 4. Comparison of vmstat and prstat
monitoring tools.

Figure 5. Instability of the closed-loop
Proportional (P) controller caused by irregular
monitoring thread scheduling.

Listing 1. Implementation of the rule which finds the list of the current CPU-bound workloads.

acquired at a time when only controlled workload is active and is assigned nearly the
entire CPU. Such data dilute the mean calculated value and if the value is bigger then
the goal, shares are decreased instead of increased. The solution to the problem is to
use a decaying average, similar to the Jacobson [14] algorithm used in the TCP/IP
Protocol to smooth measured values.

5.1 CPU control experiments

This section reports a preliminary study of the closed-loop controller with rules
proposed in the previous section. Experiments were performed under Solaris 10
running on a Sun Blade B100 (1GB RAM, CPU SPARC 650 Mhz) board. The goal of
control was to assure a constant allocation of the processor in conditions of variable
load e.g. a given project is guaranteed to use 70% of CPU regardless of the number of
other active projects workload and disturbances (also other workloads). The nspin
application, provided by the Solaris Resource Manager tools, was used. There were
two kinds of disturbances: variable and constant (Fig. 7). A variable disturbance was
generated with a period of 90 seconds. A constant disturbance was activated after the
controlled workload reached the steady state (considering the fact it was the only
CPU-bound workload, it reached close to 100% CPU usage). CPU consumption due
to monitoring and control activity performed by the JIMS Management Agent
depicted in Fig. 6 shows that this overhead is not substantial.

JIMS CPU consumption

0

10

20

30

40

50

60

70

80

90

100

0:
00

:0
0

0:
01

:2
0

0:
02

:4
0

0:
04

:0
0

0:
05

:2
0

0:
06

:4
0

0:
08

:0
0

0:
09

:2
0

0:
10

:4
0

0:
12

:0
0

0:
13

:2
0

0:
14

:4
0

0:
16

:0
0

0:
17

:2
0

0:
18

:4
0

0:
20

:0
0

0:
21

:2
0

0:
22

:4
0

0:
24

:0
0

0:
25

:2
0

0:
26

:4
0

0:
28

:0
0

0:
29

:2
0

0:
30

:4
0

0:
32

:0
0

0:
33

:2
0

0:
34

:4
0

Elapsed time

C
P

U
 u

sa
ge

Figure 6. JIMS Management Agent CPU
usage.

Generated disturbance

Elapsed time

C
P

U
 u

sa
ge

Variable Constant

Figure 7. Disturbance generated during tests.

Fig. 8 presents the case where only one CPU-bound workload is started in the

selected project, at the beginning. After a few seconds, when CPU usage increases to
95%, two other CPU-bound workloads are started in other projects, which results in a
drop of CPU usage of the selected project. Then, after several more seconds, the P
controller is turned on. It changed the share allocation to the controlled project,
stabilizing CPU usage at 70%. The experiment was repeated for different values of

the Kp coefficient. As shown in a Figure 9 the best results was achieved for Kp=7.

Comparision of the coefficient values for the P regulator

0

10

20

30

40

50

60

70

80

90

100

0:
00

:0
0

0:
02

:2
5

0:
04

:5
0

0:
07

:1
5

0:
09

:4
0

0:
12

:0
5

0:
14

:3
0

0:
16

:5
5

0:
19

:2
0

0:
21

:4
5

0:
24

:1
0

0:
26

:3
5

0:
29

:0
0

0:
31

:2
5

0:
33

:5
0

0:
36

:1
5

0:
38

:4
0

0:
41:0

5

0:
43:3

0

0:
45:5

5

0:
48:2

0

0:
50

:4
5

0:
53

:1
0

0:
55

:3
5

0:
58

:0
0

1:
00

:2
5

1:
02

:5
0

1:
05

:1
5

1:
07

:4
0

Elapsed Time

C
P

U
 u

sa
ge

Kp0.6 Kp1 Kp2

Kp3 Kp4 Kp5

Kp6 Kp7

Figure 8. Proportional regulator used for adjusting project.cpu-shares resource control for
workload with target CPU usage of 70%.

Quality of the P regulator according to the coeffic ient values

0

10000

20000

30000

40000

50000 Kp0.6

Kp1

Kp2

Kp3

Kp4

Kp5

Kp6

Kp7

Figure 9. Quality of the Proportional regulator measured using integral of squared error
method.

An interesting observation is that despite the complexity of virtualization
mechanisms and delay in CPU usage accounting performed by prstat, the system can
be approximated to the first degree. These results justify the application of P and PI
regulators for CPU usage control of the selected project, under variable disturbances
shown in Fig. 7, as presented in Fig. 10. It is evident that the smoothing operation
performed by Jacobson algorithms significantly improves control quality and

stabilizes the system. P and PI regulators provide similar quality of control, as can be
seen in Fig. 10. The integral of squared error is equal to 102271 and 100413 for P and
PI regulators respectively. Coefficients for the PI regulator were calculated on the
basis of the very well know method called step-response analysis [11].

Comparison of P and PI regulators with and without Jacobson

0

10

20

30

40

50

60

70

80

90

100

0:
00

:0
0

0:
01

:0
5

0:
02

:1
0

0:
03

:1
5

0:
04

:2
0

0:
05

:2
5

0:
06

:3
0

0:
07

:3
5

0:
08

:4
0

0:
09

:4
5

0:
10

:5
0

0:
11

:5
5

0:
13

:0
0

0:
14

:0
5

0:
15

:1
0

0:
16

:1
5

0:
17

:2
0

0:
18

:2
5

0:
19

:3
0

0:
20

:3
5

0:
21

:4
0

0:
22

:4
5

0:
23

:5
0

0:
24

:5
5

0:
26

:0
0

0:
27

:0
5

0:
28

:1
0

0:
29

:1
5

0:
30

:2
0

0:
31

:2
5

0:
32

:3
0

0:
33

:3
5

0:
34

:4
0

0:
35

:4
5

0:
36

:5
0

0:
37

:5
5

0:
39

:0
0

0:
40

:0
5

0:
41

:1
0

Elapsed time

C
P

U
 u

sa
ge

PI P

w/o regulator w/o Jacobson

 Figure 10. Proportional and Proportional-Integral regulators with the Jacobson algorithm.

6. Conclusions

This paper presents the framework for consolidated adaptive workload
management. The primary contribution is organization of the control loop and its
implementation with JMX technology, used for exposition mechanisms already
supported by modern virtualization technologies. The proposed solution was
successfully verified for a simple control policy. It opens a very wide area of research,
focused on control strategy selection. The most promising course seems to be the use
of a hybrid controller which combines elements of classical control theory with
heuristic rules or fuzzy logic. These topics will be the subject of future studies.

Acknowledgments. This research has been partially supported by the Polish Ministry
of Education and Science grant no.1583/T11/2005/29.

References

1. Horn, P. Autonomic Computing: IBM's Perspective on the State of Information
Technology, October 15, 2001, http://researchweb.watson.ibm.com/autonomic.

2. Kirchstein E., Policy Management for Autonomic Computing: Using three coordinated
tools to get managed resources PMAC-ready, April 2005.

3. Zieliński, K., Jarząb, M., Wieczorek, D., Bałos, K. JIMS Extensions for Resource
Monitoring and Management of Solaris 10, Advancing Science through Computation -
ICCS 2006, LNCS 3994, Springer-Verlag, Berlin/Heidelber, 2006, pp. 1039–1046.

4. Bałos, K., Zieliński, K. JIMS - the Uniform Approach to Grid Infrastructure and
Application Monitoring, CGW ’04, –Workshop Proceedings, 2005, pp. 160–167.

5. Price D., Tucker A., “Solaris Zones: Operating System Support for Consolidating
Commercial Workloads”, Proceedings of the 18th Usenix LISA Conference, November
14-19, Usenix, Atlanta, GA, 2004, pp. 241–254.

6. Lageman M., Solaris Containers – What They Are and How to Use Them, Sun
Microsystems, http://www.sun.com/blueprints/0505/819-2679.pdf, 2005.

7. Sun Microsystems, Java™ Management Extensions Instrumentation and Agent
Specification v. 1.2, JSR 003, available at: http://jcp.org/en/jsr/detail?id=3
(jmx_1.2_spec.pdf), Santa Clara, CA, 2002.

8. “VMware” http://www.vmware.com/.
9. “OpenVZ” http://openvz.org/.
10. P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauery, I. Pratt, A.

Wareld, Xen and the Art of Virtualization, SOSP 2003.
11. Hellerstein J. L., Diao Y., Parekh S.,Tilbury D. M., Feedback Control of Computing

Systems, Wiley-IEEE Press, August 24, 2004, ISBN-13: 978-0471266372.
12. Kay J., Lauder P., A Fair Share Scheduler, Communication of the ACM ,Volume 31,

Issue 1, January 1988, ISSN:0001-0782, pp. 44 – 55.
13. Gunther N.J., Solaris System Resource Manager: All I Ever Wanted Was My Unfair

Advantage (And Why You Can’t Get It!), Dec. 5-10 1999,Computer Measurement Group
Conference, Reno, NV.

14. Jacobson, V., "Congestion Avoidance and Control", SIGCOMM, 1988, Stanford,
California.

