
Sun Javadays ‘99

EJB and OR Mappin g

Dennis Leung

The Object People

2

About Me

Dennis Leun g
Director, Product Development
The Object People
Ottawa, Canada

dennis@ob jectpeople.com
(613) 225-8812

3

Prerequisites
• Assumes intermediate level audience

• Some knowled ge of EJB

• Basic knowled ge of object-relational mappin g
concepts.

¾ Attributes map to columns, references to other objects
may be foreign keys on the relational database.

• Relational database and object modelin g knowled ge

4

What We’ll Cover

• Overview of EJB with persistence

• Session bean persistence

• Entity bean persistence

• Focus on entity-bean CMP issues

• Mostly assumes basic persistence

5

What is EJB?
• Enterprise JavaBeans - a “Java Enterprise API” from Sun

and its partners (IBM, Oracle, BEA…)

• Allows for buildin g business lo gic
“components” that are

¾ Distributed
¾ Transactional
¾ Secure

• Often compared with CORBA and with Microsoft’s COM
component architectures.

“the standard component architecture for building
distributed object-oriented business applications...”

6

What is EJB...
• No relation to “JavaBeans”

¾ JavaBeans are client-side components.
¾ Enterprise JavaBeans are server-side components.
¾ Any similarity ends there.

• Rely heavily on tools that generate the difficult code.

¾ RMI or CORBA distribution code
¾ Security code based on Access Control Lists
¾ Transaction code on a per-method or per class basis

7

What is an EJB?
• Really just domain objects that implement certain

interfaces.

¾ Also have additional classes and interfaces associated
with them.

• These EJB “components” are a collection of Java classes
and interfaces.

¾ A “bean” class that implements the business logic.
¾ A “remote interface” that defines the client view of the

bean instance.
¾ A “home interface” that provides a “factory view” for

creating and finding beans.
¾ Additional classes may be required for some EJB servers.

8

What is an EJB?

ATM

Web
Client

relational
database

mainframe
data source

TellerBean

TellerBean

TellerBean

TellerBean

AccountBean

AccountBean

AccountBean

AccountBean

EJB Server

Desk-top
Client

Personal Java
Device

9

EJB Container and Server
• The EJB Server is a “host” for the beans

• The Server provides services for the beans to use

¾ JNDI, JDBC connections, JMS, etc.
• The Container provides an interface between the Server

and the beans

¾ manages bean life-cycle, handles pooling or caching of
beans

• The EJB specification does not clearly define the
boundary or API between the server and container

10

EJB Architecture...
• The bean lives in a “container” in the EJB server...

EJB Server

EJB
Container Client

EJB
Bean

Home

EJB
Object

*

Look - up
(Java Naming and
Directory Interface)

Creation and
finder methods
(Home Interface)

Business
methods

(Remote
Interface)

11

Session and Entit y Beans
• There are two kinds of Enterprise Beans

• Session Beans (required in EJB 1.0)

¾ define a task, service, procedure, operation, transaction…
• Entity Beans (optional in EJB 1.0, required in 1.1)

¾ define a persistent piece of data that resides in a relational
database or some other persistent storage

Session Beans are used to implement a “business task,”
while Entity Beans represent a “business entity.”

12

Session Beans
• Session beans may be “stateful” or “stateless”

¾ A stateful Session bean retains information about the client
that it is interacting with.

¾ this state is non persistent and non-transactional
¾ often referred to as “conversational state”

• Client-specific state can be held between method calls

• A stateless Session bean for gets about who it is dealin g
with between calls.

¾ used for single requests
¾ user might not get the same bean on consecutive method

invocations

13

Session Bean Persistence
• Session beans represent a service or operation.

¾ Do not directly represent stateful objects
¾ Manipulate persitent state as entity beans, normal objects,

or non-object data
• Are often described as “coarse- grained”.

¾ May wrap a non-Java program.
• Popular examples of Session beans are:

¾ Shopping cart
¾ Banking Services (Teller)
¾ Reservation System

14

Pure Session Bean Architecture...
• Session beans carr y out all of the server-related operations.

• Persistent data modeled usin g regular Java ob jects and some
persistence mechanism.

• Benefits:

¾ simple architecture

¾ fast access times
¾ little additional infrastructure needed

¾ few limitations on domain model
• Drawbacks

¾ simple client behavior

¾ no “real” objects at the bean level
¾ transactions must be managed for non-beans

15

Pure Session Bean Architecture

client
application

s1:SessionBean

s2:SessionBean

o1:Object

o2:Object

o3:Object

Session beans
provide access to
services.

Regular Java objects
model domain logic
and persistent state

16

Entit y Beans - Persistence
• Persistence is the central feature of Entity EJBs.

• How persistence is achieved is not described in the EJB
spec.

• All EJB persistence is “automatic” as far as the user of
the bean is concerned.

¾ the bean client never has to explicitly store the bean
¾ timing of load and store is left to the EJB Server/Container

• EJB persistence is generally assumed to be throu gh
relational databases, althou gh it can take other forms

¾ Object database, file system, proprietary storage system

17

Entit y Beans and Databases
• Simple model

¾ Relationships between beans not discussed
¾ Basic “one bean = one row in one table” mapping to

database world.
¾ No standard querying language.

• To remain independent of how the beans are actually
stored, EJB presents a very basic view of persistence.

18

Entit y Beans - BMP/CMP
• Entity Beans are persistent domain objects - two

persistence mechanisms possible:

¾ Bean-managed persistence (BMP)
¾ Container-managed persistence (CMP)

• With BMP, the developer writes their own persistence
code directly in the bean.

• With CMP persistence is declarative, based on
information provided at deployment time.

¾ this is often referred to as “automatic” persistence

19

Entit y Beans - BMP
• Bean-mana ged persistence “lets” developers write the

persistence code themselves.

¾ Dictates how persistence is to be handled.
• Database reads and writes occur in specific methods

defined for bean instances.

• The Server or Container decides when these methods are
called.

ejbLoad() - “load yourself”
ejbStore() - “store yourself”
ejbCreate() - “create yourself”
findBy…() - “find yourself”
ejbRemove() - “remove yourself”

20

Entit y Beans - BMP (continued)
• BMP allows code to be custom-written for specific

sitautions: can hand-tune, tar get less common platforms

• Havin g persistence code directly in the bean instance
leads to some problems.

¾ Object identity not guaranteed - findOne is an instance
method, can defeat cache hits

¾ Efficiency - findMany returns only primary keys, so each
bean requires a separate database read

¾ Limited control - user has control over direct persistence,
but not related issues (caching, locking, concurrent
access)

¾ “Manual” relationship management

21

Entit y Beans - CMP
• With container-mana ged persistence persistence is

based on information in the deployment descriptor.

¾ Different kinds of persistence mechanisms will require
different “containers” that will provide the right code for the
beans.

• Persistence is “automatic” not only for the user of the
bean, but also for the developer.

¾ No persistence code needs to be written in the bean in this
case.

¾ Code may be generated in the container or persistence
may be based on meta-data.

22

Entit y Beans - CMP (continued)
• Existin g persistence frameworks cannot immediately be

used for container-mana ged persistence.

¾ Requires integration with EJB Server.
¾ No standard API has been defined for EJB Server

interactions, therefore each integration is specialized.
• Issues

¾ Cache integration ¾ Concurrent access
¾ Bean Relationships ¾ Database integrity constraints
¾ Queries ¾ One table/one class assumption
¾ Bean Inheritance
¾ Transactions

23

Cache Inte gration

• EJB Server provides a cache

• Persistence frameworks provide a cache

• Caches must be kept in sync or combined

¾ Multiple copies vs. in-memory locking
¾ Avoids caching problems of BMP

• cache hits can occur even on non-PK queries
• reads of multiple beans can instantiate and return

beans directly

24

Bean Relationshi ps
• The EJB specification does not discuss how Entity beans

should be related to one another.

¾ EJB 2.0 is planned to address relationships
¾ We assume the simplest mechanism for relationships,

through remote interfaces
• Relationships exist between “remote interfaces.”

¾ No special relationship objects
¾ No persistent relationship management code in bean.
¾ Same mechanism as relationships from clients to beans

25

Emplo yee Address

Pro ject

lives at

manages

*

is member
lead by

*

*

has member

Bean Relationshi ps...

• In a normal domain model, domain objects refer to each
other directly.

26

Bean Relationshi ps...

Emplo yeeBean AddressBean

Pro jectBean

lives atmanaged by

has
member

led by

Address

is member

manages

*

*

*

Project

Emplo yee

Emplo yee

• In EJB, domain objects (Entity beans) must refer to one
another usin g their remote interfaces.

27

Bean Relationshi ps...

• If EmployeeBean is to be related to an AddressBean, it
must refer to the bean throu gh its remote interface.

public class EmployeeBean implements EntityBean {
public EntityContext ctx; // required by EJB 1.0
public Address address; // remote interface for AddressBean
//...

}

28

Finders and Queries
• Readin g objects is defined in terms of “finder” methods

on the home.

• No standard (portable) way of definin g a finder method

¾ Hand-written code based on natural language description
¾ Proprietary finder description language (not portable

between servers/containers)
¾ Specify directly in terms of underlying database (e.g. SQL)

• Finders represent static queries

¾ No ad hoc/dynamic querying
• Beans are heavy-wei ght components

¾ Sometimes you just want data

29

Finders and Queries (continued)
• Want an extensible queryin g system

¾ In terms of objects, not rows
¾ expressive (joins, inheritance, multiple tables, …)
¾ static or dynamic (findByQuery)
¾ support querying for raw data as well as beans
¾ anything the container can do, I can do…

• Non-proprietary would be nice but…

¾ OQL: problematic for relational DB, not widely used
¾ SQL3: poor match for object model
¾ non-string format?: bad for non-Java clients
¾ others?

30

Bean-Level Queries

• Queries should be specified in terms of the object model,
not in terms of rows

¾ employee.manager.address = someAddress
¾ SELECT * FROM EMP t1, EMP t2, ADDR t3 WHERE

t1.MGR_ID = t2.EMP_ID AND t2.ADDR_ID = t3.ADDR_ID
AND t3.ADDR_ID = <someAddress.id>

• This is non-trivial

¾ joins, self-joins
¾ multiple tables/multiple objects in a row
¾ inheritance
¾ database functions (employee.name.toUppercase())

31

Data-Level Queries

• Instantiatin g beans is expensive

¾ heavyweight objects, remote interface, caching
• You don’t always need the full objects

¾ displaying a list
¾ performing simple calculations

• Support data-level reads

¾ specific fields
¾ aggregate functions
¾ unmapped data

32

Inheritance
• How do we represent inheritance in a relational

database?

¾ each abstract and sub-class has its own table
¾ each sub-class has data in its own table
¾ sub-classes have data in its own table as well as

parent’s
• Breaks the 1class/1 table idea

• Need a type column (or somethin g…) to distin guish
sub-class.

• Super-classes need to be able to find all sub-classes.

33

EJB and Inheritance
• Inheritance is not mentioned in EJB 1.0.

¾ Is mentioned in EJB 1.1 but not dealt with…
¾ Varies by server

• Typically inheritance can be used as follows:

¾ homes do not inherit
¾ beans can inherit from one another
¾ remote interfaces can inherit from one another

• The notion of “component inheritance” is not clearly
defined.

34

EJB and Transactions

• EJB has “declarative” transactions

¾ normally delimited by start/end of method calls
• Ideally, want full transactional semantics at the bean level

¾ What objects participate?
• The server knows, beans register as synchronized

¾ What needs to be written?
• Need to track changes

¾ “Transaction” should control object writes
• Re-order writes to respect integrity constraints

¾ Rollback or discard beans on commit failure

35

Entities and Transactions…
• Exercise care with container-mana ged transactions.

¾ Default behaviour is a separate transaction for every
method call.

¾ Reasonable for session bean “services”, not normally
reasonable for entity beans

¾ Transactions are expensive, transaction semantics are
usually

¾ Leaving transaction management up to the client is not
necessarily the best idea.

• So...

36

Session & Entit y Tiered Architecture
• Client access is limited to Session beans, which in turn

access Entities.

• Entity beans are used to model persistent domain
entities.

• Benefits:

¾ Session beans provide transactions and security while
Entity beans provide persistence mechanism.

¾ Uses the strengths of both types of beans.
• Drawbacks:

¾ Greater complexity/overhead on domain model.

37

Session & Entit y Tiered Architecture…

client
application

s1:SessionBean

s2:SessionBean

e1:EntityBean

e2:EntityBean

e3:EntityBean

Session beans
provide access to
server-side application
logic.

Entity Beans model
domain logic and
persistent state

38

Concurrent Access

• Transaction cannot be allowed to interfere

• Pessimistic lockin g of beans too restrictive

• Make copies

¾ Each transaction has a separate copy of beans
¾ Manage access at the database level

• Pessimistic locking: for complete certainty
– Usually not appropriate for interactive applications

• Optimistic locking: better performance, concurrency

39

Application Server Performance

• Server Optimizations

¾ Resource sharing/pooling
• JDBC connection pooling
• Shared cache for read-only objects

¾ Replication
• EJBs are pure server-side objects
• Migration to client can be a big win
• Session bean architecture?
• Migrate copies of entity bean data, push back?

40

Application Server Performance

• Bean Granularity

¾ All inter-bean calls go through remote invocation
¾ Non-reentrant, restrictive on domain model
¾ Consider coarser-grained entity beans with “dependent

objects” (EJB 1.1 terminology)
• Persistence framework must handle mixed beans/non-

beans
• Dependent objects can only be passed by value

41

Persistence O ptimizations

• Optimized Readin g

¾ Minimize database round-trips
• Read multiple objects at a time (findMany, joins)
• Data-level reads
• Do work in the database

¾ Avoid reading too much
• Database cursors

¾ Stored procedures/Static SQL
¾ Clever use of caching

42

Summar y

• A number of architectures for EJB, each have their own
set of issues related to object/relational persistence.

¾ Session Beans with persistent Java objects
¾ Session Beans with Entity beans
¾ Bean-managed Entity beans
¾ Container-managed Entity beans

